Inhibitors of the Hydrolytic Enzyme Dimethylarginine Dimethylaminohydrolase (DDAH): Discovery, Synthesis and Development.
نویسندگان
چکیده
Dimethylarginine dimethylaminohydrolase (DDAH) is a highly conserved hydrolytic enzyme found in numerous species, including bacteria, rodents, and humans. In humans, the DDAH-1 isoform is known to metabolize endogenous asymmetric dimethylarginine (ADMA) and monomethyl arginine (l-NMMA), with ADMA proposed to be a putative marker of cardiovascular disease. Current literature reports identify the DDAH family of enzymes as a potential therapeutic target in the regulation of nitric oxide (NO) production, mediated via its biochemical interaction with the nitric oxide synthase (NOS) family of enzymes. Increased DDAH expression and NO production have been linked to multiple pathological conditions, specifically, cancer, neurodegenerative disorders, and septic shock. As such, the discovery, chemical synthesis, and development of DDAH inhibitors as potential drug candidates represent a growing field of interest. This review article summarizes the current knowledge on DDAH inhibition and the derived pharmacokinetic parameters of the main DDAH inhibitors reported in the literature. Furthermore, current methods of development and chemical synthetic pathways are discussed.
منابع مشابه
Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats
Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...
متن کاملDimethylarginine dimethylaminohydrolase and endothelial dysfunction in failing hearts.
Congestive heart failure (CHF) is associated with impaired endothelium-dependent nitric oxide (NO)-mediated vasodilation (endothelial dysfunction). We hypothesized that coronary endothelial dysfunction in CHF may be due in part to decreased dimethylarginine dimethylaminohydrolase (DDAH), the enzyme that degrades endogenous inhibitors of NO synthase (NOS), including asymmetric dimethylarginine. ...
متن کاملDimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis: genetic and physiological evidence.
BACKGROUND NO is a major regulator of cardiovascular physiology that reduces vascular and cardiac contractility. Accumulating evidence indicates that endogenous inhibitors may regulate NOS. The NOS inhibitors asymmetric dimethylarginine (ADMA) and N-monomethylarginine are metabolized by the enzyme dimethylarginine dimethylaminohydrolase (DDAH). This study was designed to determine if increased ...
متن کاملDiscovery of inhibitors of the pentein superfamily protein dimethylarginine dimethylaminohydrolase (DDAH), by virtual screening and hit analysis.
An efficient process for the discovery of inhibitors of DDAH enzymes, without the requirement for high throughput screening, is described. Physicochemical filtering of a 308,000-compound library according to drug likeness followed by reciprocal nearest neighbour selection produced a representative subset of 35,000 compounds. Virtual screening on a dual processor PC using FlexX, followed by biol...
متن کاملArginine analogues incorporating carboxylate bioisosteric functions are micromolar inhibitors of human recombinant DDAH-1.
Dimethylarginine dimethylaminohydrolase (DDAH) is a key enzyme involved in the metabolism of asymmetric dimethylarginine (ADMA) and N-monomethyl arginine (NMMA), which are endogenous inhibitors of the nitric oxide synthase (NOS) family of enzymes. Two isoforms of DDAH have been identified in humans, DDAH-1 and DDAH-2. DDAH-1 inhibition represents a promising strategy to limit the overproduction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 21 5 شماره
صفحات -
تاریخ انتشار 2016